Recent advances in development and application of assays/algotithms for detection of recent HIV infections and estimation of incidence

> Michael Busch, MD, PhD Blood Systems Research Institute University of California San Francisco

CDC/APHL HIV Diagnostics Conference, 2010

Why its important to detect pre-SC windowphase HIV infections?

- Prevent viral transmission by blood transfusions and organ and tissue transplants
- Identify early infections in public health screening and diagnostic settings
 - acute-viremic phase of infection is highly infectious
 - more effective response to treatment if initiated during acute compared to chronic stages?
 - prevent secondary transmission by contact tracing and counseling to modify risk behaviors
- Identify subjects in primary infection for pathogenesis, treatment and vaccine research

HIV acute and early infection

Peak viremia: 10⁶-10⁸ gEq/mL

Closing the infectious window period

HIV-1 transmission by transfusion of blood from **SC** donors according to the interdonation interval

HIV Stage Progression based on 51 Seroconverting Plasma Donors

Fiebig stage classification for sub-stages of HIV-1 primary infection, and the average and cumulative duration of each phase.

Stage	Duration of each phase (days)	Cumulative duration (days)
Eclipse	10 (7,21)	10 (7,21)
I (vRNA+)	7 (5,10)	17 (13,28)
II (p24Ag+)	5 (4,8)	22 (18,34)
III (ELISA+)	3 (2,5)	25 (22,37)
IV (Western Blot \pm)	6 (4,8)	31 (27,43)
V (Western Blot +, p31–)	70 (40,122)	101 (71,154)
VI (Western Blot +, p31+)	Open-ended	

The Incidence Rate / Window Period (WP) Model Allows Prediction of Test Yields for Direct HIV Assays (p24 Ag, HIV RNA) vs. EIA Antibody Test

Test Yield (per unit) =

Incidence Rate (person-years) × Decrease in WP (fraction of year)

Projected WP Closure and Yield of p24 Ag, MP and ID NAT Assays Relative to a Sensitive HIV-1/2 EIA Antibody Test in the Detection of WP HIV Infection

Assay	Sensitivity	WP Closure	Yield, WP HIV Infectio So [Representative	ns per 1,000 Persons T creening Settings Incidence Rate / Perso	ested in Various
	mL]	[days]	Blood Donors [2 / 100,000 = 0.002%]	STD Clinic [1 / 1,000 = 0.1%]	High Risk Clinic [1 / 10 = 10%]
p24 Ag	10,000	6	0.00033	0.016	1.6
MP NAT	1,000	9	0.00049	0.025	2.5
ID NAT	50	13	0.00071	0.036	3.6

Fiebig et al. AIDS, 17:1871-9, 2003

Identification and characterization of transmitted and early founder virus envelopes in primary HIV-1 infection

Brandon F. Keele^a, Elena E. Giorgi^{b,c}, Jesus F. Salazar-Gonzalez^a, Julie M. Decker^a, Kimmy T. Pham^a, Maria G. Salazar^a, Chuanxi Sun^a, Truman Grayson^a, Shuyi Wang^a, Hui Li^a, Xiping Wei^a, Chunlai Jiang^d, Jennifer L. Kirchherr^d, Feng Gao^d, Jeffery A. Anderson^a, Li-Hua Ping^f, Ronald Swanstrom^f, Georgia D. Tomaras^g, William A. Blattner^h, Paul A. Goepfert^a, J. Michael Kilby^a, Michael S. Saag^a, Eric L. Delwartⁱ, Michael P. Buschⁱ, Myron S. Cohen^a, David C. Montefiori^g Barton F. Haynes^d, Brian Gaschen^b, Gayathri S. Athreya^b, Ha Y. Lee^j, Natasha Wood^k, Cathal Seoighe^k, Alan S. Perelson^b, Tanmoy Bhattacharya^{b,J}, Bette T. Korber^{b,I}, Beatrice H. Hahn^{a,m}, and George M. Shaw^{a,m,n}

102 acutely infected plasma donor panels

3476 complete *env* sequences from single genome amplificationsInferred consensus sequence at estimated time of virus transmission78 donors infected by single virion; 24 by 2-5 virions

Why Determine HIV Incidence?

- Characterize the epidemic in a population
 - Monitor changes over time
 - Identify important sub-populations for interventions
- Assess impact of programs
- Identify populations for HIV intervention trials
 Endpoint of intervention trials
- Identify individuals for interventions
 - Prioritization
 - Interrupt transmission

Standard Methods for Incidence Determination are Unsatisfactory

- Indirect methods; repeat cross-sectional measurements; modeling
- Prospective follow-up is expensive and unrepresentative
- Enrollment in cohorts leads to behavior change
- Back calculation methods not timely or reliable

HIV Incidence Using Early Diagnostic Tests

Figure 2

New Testing Strategy to Detect Early HIV-1 Infection for Use in Incidence Estimates and for Clinical and Prevention Purposes

Robert S. Janssen, MD; Glen A. Satten, PhD; Susan L. Stramer, PhD; Bhupat D. Rawal, PhD; Thomas R. O'Brien, MD, MPH; Barbara J. Weiblen, MS; Frederick M. Hecht, MD; Noreen Jack, MBBS, MPH; Farley R. Cleghorn, MD, MPH; James O. Kahn, MD; Margaret A. Chesney, PhD; Michael P. Busch, MD, PhD

Abbott EIA 3A11 assay: sensitive/less-sensitive ("detuned")

Recent Infection Testing Algorithm (RITA)

Cross-Sectional Incidence Formula

HIV Incidence and RITA: Cross-Sectional Surveys Survey size = 1000HIV-seropositive = 100(10%)Recent on incidence assay = 10RITA duration = 170 days 2.15 x 10 Incidence = x 100 = 2.33% per year 900 + 21.5

The Ideal Assay for Recent Infection

- Describes a distinct "detection window" of relatively uniform duration
- Is universally positive in recent infection and negative later in infection (or vice versa)
- Is unaffected by:
 - virus subtype
 - mode of transmission
 - therapy
 - OI and AIDS
 - Age, sex, race
- Has a relatively long window, all else being equal

RITA and Misclassification

AIDS RESEARCH AND HUMAN RETROVIRUSES Volume 18, Number 4, 2002, pp. 295–307 © Mary Ann Liebert, Inc.

Quantitative Detection of Increasing HIV Type 1 Antibodies after Seroconversion: A Simple Assay for Detecting Recent HIV Infection and Estimating Incidence

BHARAT S. PAREKH,¹ M. SUSAN KENNEDY,¹ TRUDY DOBBS,¹ CHOU-PONG PAU,¹ ROBERT BYERS,¹ TIMOTHY GREEN,¹ DALE J. HU,¹ SUPHAK VANICHSENI,² NANCY L. YOUNG,³ KACHIT CHOOPANYA,² TIMOTHY D. MASTRO,^{1,3} and J. STEVEN McDOUGAL¹

BED competitive capture EIA -Indirectly measures HIV-IgG as a proportion of total IgG

Distribution of Window Periods for BED

BED Window Period (Days) <u>5.9% > 2x mean ω to reach cutoff</u>

Challenges to Using Antibody Maturation to Identify Recent Infection

- Variable immune response among individuals

 Antibody response related to viral level
- Variability by HIV-1 subtypes
- False-recent status (long-term specificity)
 - Elite controllers (low viral levels)
 - Accumulate in population
 - ART use (low viral levels)
 - Advanced HIV disease (AIDS)

Improved HIV-1 incidence estimates using the BED capture enzyme immunoassay

John W. Hargrove^{a,f}, Jean H. Humphrey^{a,c}, Kuda Mutasa^a, Bharat S. Parekh^d, J. Steve McDougal^d, Robert Ntozini^a, Henry Chidawanyika^a, Lawrence H. Moulton^c, Brian Ward^e, Kusum Nathoo^b, Peter J. Iliff^a and Ekkehard Kopp^f

Proposed determination and use of a factor epsilon ($\boldsymbol{\varepsilon}$) to correct for misclassification of long-standing infections as recent.

HIV Incidence Assays

- "Detuned" assays
 - Abbott 3A11 unavailable
 - bioMérieux Vironostika HIV-1 Avioq
 - Ortho Vitros ECi
- BED-Capture EIA (Calypte; Trinity)
- Avidity assays
 - Run on Abbott AxSYM
 - Bio-Rad
 - Run on Ortho Vitros analyzer
- IDE-V3 assay
- IgG3 anti-HIV
- Inno-LIA HIV adaptation

Modification of Rapid Human Immunodeficiency Virus (HIV) Antibody Assay Protocols for Detecting Recent HIV Seroconversion

Stephen D. Soroka, Timothy C. Granade, Debra Candal, and Bharat S. Parekh* Division of HIV/AIDS Prevention, National Center for HIV/AIDS, STD, and TB Prevention, Centers for Disease Control and Prevention, Atlanta, Georgia 30333

AIDS RESEARCH AND HUMAN RETROVIRUSES Volume 26, Number 1, 2010 © Mary Ann Liebert, Inc. DOI: 10.1089/aid.2009.0133

Development of Two Avidity-Based Assays to Detect Recent HIV Type 1 Seroconversion Using a Multisubtype gp41 Recombinant Protein

Xierong Wei, Xin Liu, Trudy Dobbs, Debra Kuehl, John N. Nkengasong, Dale J. Hu, and Bharat S. Parekh

Eurosurveillance

Free of charge for authors, free of charge for readers.

September 2008

Review articles

Assays for the detection of recent infections with human immunodeficiency virus type 1

G Murphy (gary.murphy@hpa.org.uk)¹, J. V. Parry^{1,2}

1. Virus Reference Department, Health Protection Agency Centre for Infections, London, United Kingdom

2. Department of Public Health and Policy, London School of Hygiene and Tropical Medicine, London, United Kingdom

Review articles

PRINCIPLES AND USES OF **HIV** INCIDENCE ESTIMATION FROM RECENT INFECTION TESTING - A REVIEW

S Le Vu (s.levu@invs.sante.fr)¹, J Pillonel¹, Caroline Semaille¹, P Bernillon¹, Y Le Strat¹, L Meyer², J C Desenclos¹

- 1. Department of Infectious Diseases, HIV/AIDS-STI-HCV Unit, Institut de veille sanitaire (French Institute for Public Health Surveillance, InVS), Saint-Maurice, France
- 2. Department of Epidemiology, Institut national de la santé et de la recherche médicale/Institut national d'études démographiques (National Institute of Health and Medical Research/National Institute for Demographic Studies, INSERM/INED/ Paris XI U569), Le Kremlin-Bicêtre, France

What Needs to be Done

- WHO Technical WG on HIV Incidence Assays
 - www.who.int/diagnostics_laboratory/links/hiv_incidence_assay
- Guidance on assay use
- Solidify consensus on mathematical issues
- Define the assay development pathway
- Define and assemble specimens for assays calibration and validation
- Engage industry on assay development

Assay Calibration and Validation

- Establish "RITA Interval" and "False Recent Rate"
- Requires large numbers of well-characterized seroconversion panels and FRR panels
 - Various populations and sub-populations
 - Geographic, transmission modes, etc.
 - Various HIV-1 subtypes
 - Early and long-standing infections
 - Co-infections (TB, malaria)
- Such specimens aren't readily available in sufficient volume in a central location

WHO HIV Technical Working Group on HIV Incidence

Review

Assays to Estimate HIV Incidence and Detect Acute HIV Infection

Accuracy of serological assays for detection of recent infection with HIV and estimation of population incidence: a systematic review

Rebecca Guy, Judy Gold, Jesus M García Calleia, Andrea A Kim, Bharat Parekh, Michael Busch, Thomas Rehle, John Hargrove, Robert S Remis, John M Kaldor, for the WHO Working Group on HIV Incidence Assays*

We systematically reviewed the accuracy of serological tests for recent infections with HIV that have become widely Lancet Infect Dis 2009; 9:74; used for measuring population patterns incidence of HIV. Across 13 different assays, sensitivity to detect recent infections ranged from 42-100% (median 89%). Specificity for detecting established infections was between 49.5% and 100% (median 86.8%) and was higher for infections of durations longer than 1 year (median 98%, range 31-5-100-0). For four different assays, comparisons were made between assay-derived population incidence estimates and a reference incidence estimate. The median percentage difference between the assay-derived incidence and reference incidence was 26.0%. Serological assays have reasonable sensitivity for the detection of recent infection with HIV, but are vulnerable to misclassifying established infections as recent-potentially leading to biases in incidence estimates. This conclusion is highly qualified by the apparent absence of a standardised approach to assay evaluation. There is an urgent need for an internationally agreed framework for evaluating and comparing these tests.

*Other members listed at the end of the paper Centre for Population Healt Burnet Institute, Melbourn VIC, Australia (R Guy PhD, | Gold BBiomedSci); Nationa Centre in HIV Epidemiology and Clinical Research, University of New South W Sydney, NSW, Australia (R 🤇 Prof I M Kaldor PhD): HIV/AI

Global Landscape & Market Assessments

BILL& MELINDA GATES foundation

Guidance Document

When and how to use assays for recent infection to estimate HIV incidence at a population level Prepared on behalf of the World Health Organization Technical Working Group on HIV Incidence Assays With support of a grant from the Bill & Melinda Gates Foundation

Steps involved in applying RITA to estimate HIV incidence

Application of a RITA based on a laboratory assay for recent infection and additional clinical information

HIV infecte individuals	ed S	
Assay for recent infection*	Non-recent infection	Non-recent infection
Recent infection		
History of HIV infection	HIV diagnosis <1 year prior	Non-recent infection
Diagnosis no previou	≤1 year prior or s HIV diagnosis	
CD4 count	CD4 <200 cells/mm ³	Non-recent infection
CD4 ≥200) cells/mm³	
AIDS illness	Diagnosis of AIDS illness	Non-recent infection
Negative f AIDS illnes	For SS	
Anti- retroviral testing	Positive	Non recent infection
Negative		
Sample from recently HIV infected subject		
* Known mean RITA duration	n	

Performance in Clade B of BED + Avidity Testing Algorithm

Estimated Window Period using

HIVNET & Vaxgen004 (154 subjects, median 4 samples / subject)

Avidity & BED cutoff Values	Mean Recency Period	(95% Conf Limits)
30% , 0.6	117.3	(93.1, 141.4)
40%, 0.8	143.0	(117.8, 168.2)
40%, 1.0	163.6	(138.0, 189.1)
50%, 0.8	147.8	(122.0, 173.5)
80%, 1.0	203.8	(170.0, 237.6)

Misclassification Rate in Known Chronically Infected Individuals (2

Avidity & BED cutoff Values	MACS N= 341 individuals	ALIVE N= 284 individuals
30% , 0.6	0.58% (2/341)	0.35% (1/284)
40%, 0.8	0.74% (3/341)	0.35% (1/284)
40%, 1.0	0.74% (3/341)	0.35% (1/284)
50%, 0.8	2.35% (8/341)	0.35% (1/284)
80%, 1.0	3.81% (13/341)	3.52% (10/284)

Incidence Comparison at Johns Hopkins Emergency Department 2001 & 2007

Clade B epidemic Use BED 0.8 & Avidity 40% Assume 143 day window period Misclassification rate of 0.7%

	Survey year		
	2001	2007	
HIV negative	1366	4154	
HIV positive	183	321	
Recent positives	8	4	
Incidence Estimates	1.26%	0.11%	
One sided P value for diffe	rence = 0	.0008	

Acknowlegements

- Oliver Laeyendecker
- Sue Eshleman
- Bharat Parekh
- Bernie Branson
- Andrea Kim
- Connie Sexton
- Mary Lynn Baniecki
- Karine Dube
- Megan Averill
- Renee Ridzon
- Bill Rodriguez
- Christine Rousseau

- Tim Mastro
- Chris Pilcher
- John Kaldor
- Txema Garcia-Calleja
- Gaby Vercauteren
- Thomas Rehle
- Alex Welte
- Tom McWalter
- Tim Hallett
- Michelle Owen
- Joanne Micallef
- Gary Murphy