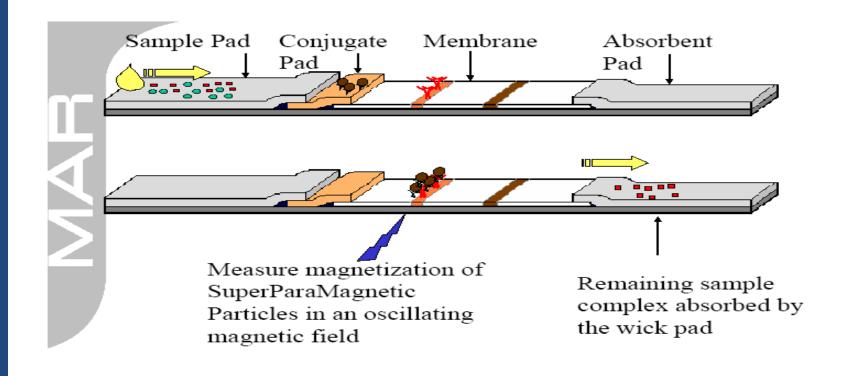
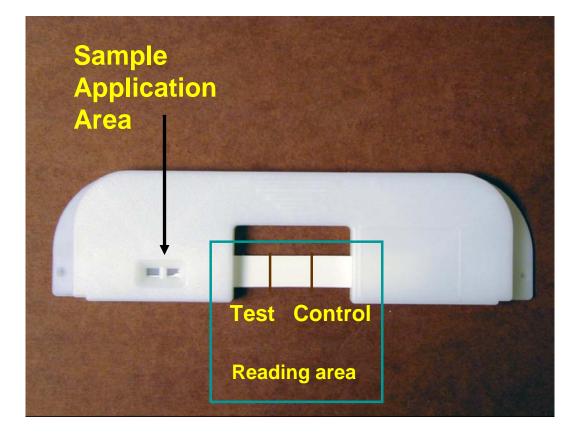
Rapid detection of HIV-1 p24 antigen and of antibodies to HIV-1 and HIV-2 using magnetic immuno-chromatography (MICT)

> Timothy C. Granade, MS HIV Laboratory Branch Division of HIV/AIDS Prevention NCHHSTP/CDC

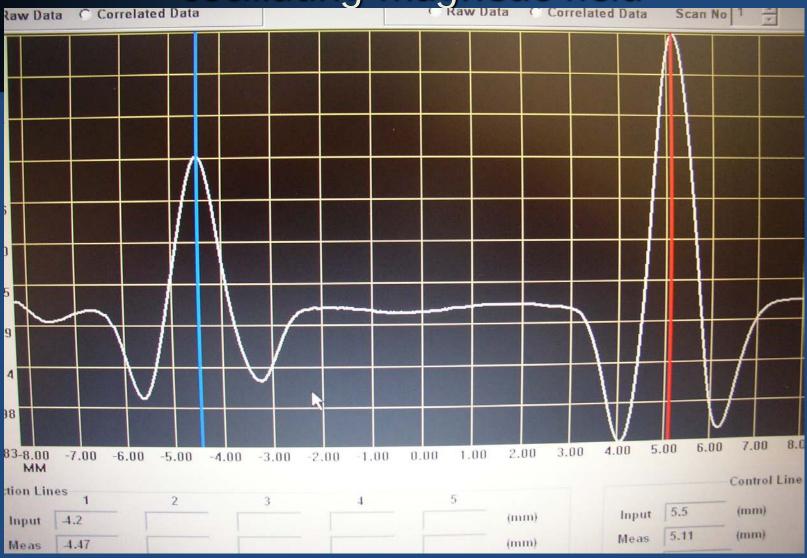

Applications for additional Rapid Testing diagnostics


Blood safety Improved surveillance Identification of primary HIV infection Monitoring anti-viral therapy **Diagnosis of infected** newborns

Magnatic immunochromatography (MICT) MagnaBioSciences, LLC

- 1. Lateral flow format
- 2. Uses super-paramagnetic beads as test marker
- 3. Detects all captured target at test line improving sensitivity
- 4. Simple to perform
- 5. Cost/test is comparable to current lateral flow tests

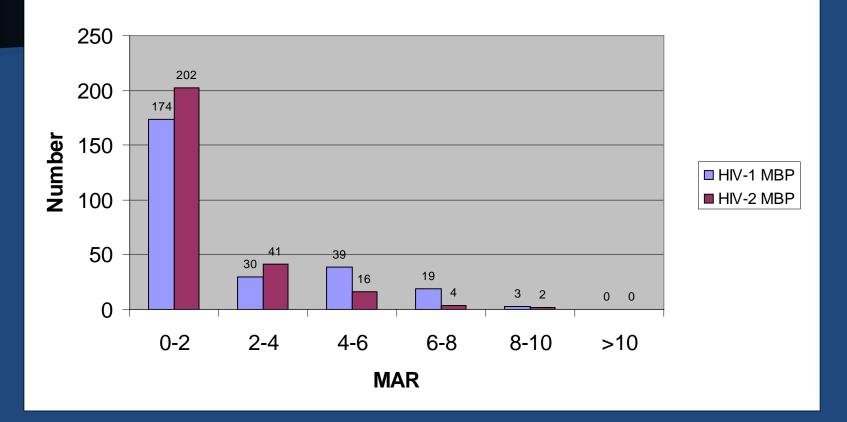
Rapid Diagnostics MBS MICT assay



MagnaBioSciences detection instrument – CE certified

Detection of magnetic field distortion in oscillating magnetic field

Computer software validates the data and derives a normalized numeric value (MAR)


Detection and differentiation of antibodies to HIV-1 and HIV-2

Antigens –

- Protein A as control
- eight-branched peptide including multiple immuno-dominant regions of HIV-1
- eight branched peptide for HIV-2
- Protein A/300nm paramagnetic particles
- Dilution of 1:100
- 20 min incubation

Typical MAR data for HIV antibody-positive and antibody-negative specimens Indirect immunoassay – 2nd generation

		MAR @	MAR @ 20 min			
Sp	becimen	HIV-1	HIV-2			
	1	535.8	0			
HIV-1	2	750.6	0			
	3	1009.5	0			
	4	Ο	1054.8			
HIV-2	5	Ο	412.0			
	6	Ο	1531.5			

MAR values for HIV antibody non-reactive specimens (N=265) on the multi-branched peptide (MBP) antigen lines for HIV-1 and HIV-2.

Detection of antibodies to HIV 1 & 2 by MICT compared to detection of HIV-1 and HIV-2 antibodies by EIA/WB reference standard. Specimens from US, west and central Africa; N=549

Indirect immunoassay

EIA/WB Result	МІСТ					
	HIV-1 P	HIV-2 P	HIV N			
HIV-1 P	134	0	0			
HIV-2 P	0	65	0			
N	0	0	350			

 Sensitivity (%)
 100 %

 Specificity (%)
 100 %

HIV-1/2 antibody detection by MICT

- Detection of HIV-1 seroconversion 13 panels equal to or better that WB but not as good as 3rd generation EIA
- HIV-1 subtypes were detectable by the MICT assay using specimens from global locales and commercial sources.
- Would an antibody sandwich assay improve sensitivity?
- Only modification required is the paramagnetic conjugate

Typical MAR data for HIV antibody-positive and antibody-negative specimens Antibody sandwich immunoassay – 3rd generation

		MAR @ 20 min			
Sp	ecimen	HIV-1	HIV-2		
	1	723.3	0		
HIV-1	2	873.7	0		
	3	964.6	0		
	4	0	676.4		
HIV-2	5	0	436.5		
	6	0	368.1		

Detection of antibodies to HIV 1 & 2 by MICT compared to detection of HIV-1 and HIV-2 antibodies by the EIA/WB reference standard. Specimens from US, west and central Africa; N=237

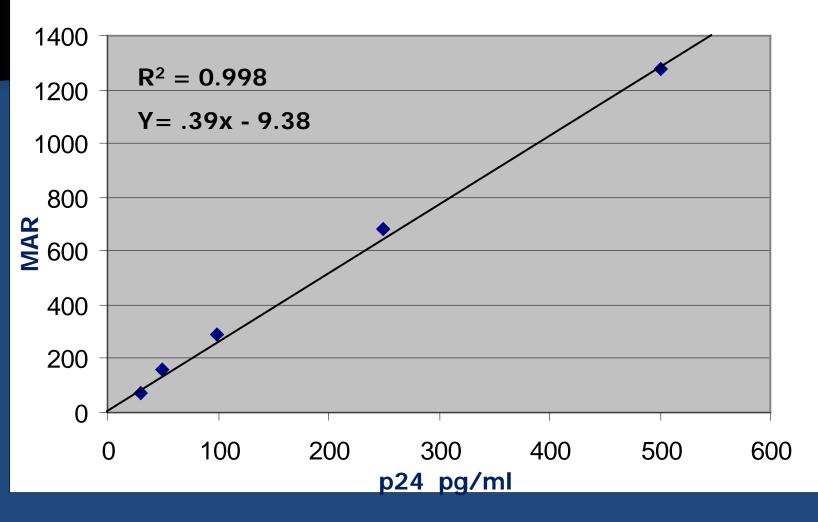
Antibody sandwich immunoassay

EIA/WB Result	МІСТ					
	HIV-1 P	HIV-2 P	HIV N			
HIV-1 P	117	5	0			
HIV-2 P	0	91	0			
N	0	1	28			

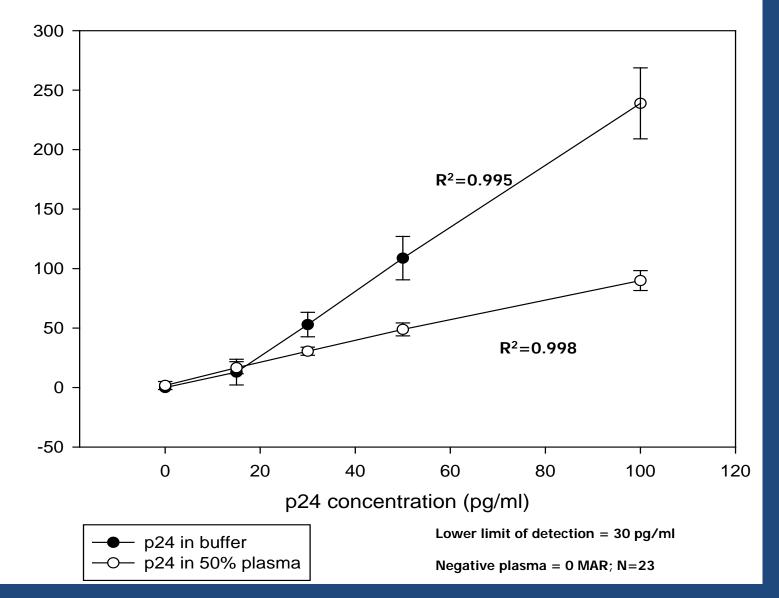
Detection of HIV-1 p24 Challenges

Concentration of p24 (low pg/ml LOD)
Availability of analyte (Ag/Ab complexes)
Unique reagents required
Assay optimization
Plasma matrix effects

Detection of HIV-1 p24 by MICT


Rabbit polyclonal capture antibody

•Mouse monoclonal conjugate


Running buffer selection

Assay optimization parameters
Incubations, reagent concentrations, materials

Detection of HIV-1 p24 spiked into running buffer

Detection of HIV-1 p24 in sample buffer and 50% plasma

MAR

Detection of p24 antigen in seroconversion panels by MICT

Panel	Member	Day	EIA	WB	VL	p24	MICT
			S/CO			S/CO	(MAR)
1	1	14	0.1	N	2x10 ³	0.2	0
	2	16	0.1	Ν	9x10 ⁴	1.5	13.4
	3	21	0.1	Ν	>8x10 ⁵	>50	46.4
	4	23	0.4	Ν	>8x10 ⁵	>50	681.0
	5	103	17.9	Р	2x10 ⁴	0.1	0
2	1	7	0.1	N	1x10 ⁵	1.5	1.5
	2	12	0.2	Ν	>8x10 ⁵	32.3	29.0
	3	14	2.5	Ν	>8x10 ⁵	>44.0	111.3
	4	19	>18.2	Ν	>8x10 ⁵	27.6	42.6
	5	21	>18.2	1	6x10 ⁵	16.4	20.7

HIV-1 p24 detection

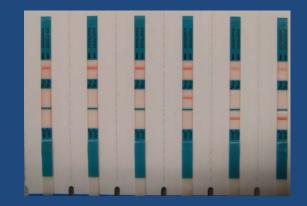
Detection of HIV-1 p24 antigen in various HIV-1 subtype culture fluids

Detection of p24 antigen in spiked plasma specimens with ~250,000 copies of HIV-1 RNA

Inter-run and intra-run reproducibility was excellent with CVs <12%</p>

Workman et al. 2009 JVM 160:14-21

Detection of HIV-1/2 antibodies and p24 antigen by MICT


Panel member	Abbott HIV 1/2 s/co	Abbott p24 agn s/co	Roche PCR	WB_Band Pattern	2nd gen MICT	3rd gen MICT	p24 MICT
AC-01	0.2	0.6	NEG	no Bands	1.5	0	0
AC-02	7.8	>22.7	POS	no Bands	0	0	177.6
AC-03	15.1	2.2	POS	24,55,160	90.9	982.8	0
AC-04	15.6	1.8	POS	24,55,120,160	151.1	794.3	0
AC-05	16.4	1.0	POS	18,24,55,120,160	146.5	1106	0

Status of MICT based assays Next steps

- Reproducible detection of 30 pg/ml in plasma
- Detection of spiked virus at 2.5X10⁵ virions/ml
- Detection of p24 in seroconversion panels
- Detection of p24 in culture supernatants from various HIV clades (A-G, O)
- Second and third generation aby tests have been developed
- Aby/Ag combination rapid test

Applications for additional Rapid Testing diagnostics

- Detection of HIV-1 p24 in physiologically relevant ranges is feasible
- Rapid p24 testing will be incorporated into more assays
- Applications for p24 testing to be established
 Low-tech readers for objective determinations

Acknowledgements

CDC

- Shon Workman
- Ae Youngpairoj
- Michele Owen
- Susan Wells
- Chou Pau
- Angela Holder

SRP/CDC

- John Hart
- Kelly Jeter
- James Partin

MagnaBioSciences

- Jim Wyatt
- Ron LaBorde
- Fan Dong
- Dave Pratt