Optimization and Calibration of Less Sensitive and Avidity Modified Protocols for the Vitros Immunodiagnostic Products Anti-HIV-1+2 Assay for Detection of Early HIV Infections

Sheila M. Keating, Debra Hanson, Lydmila Lebedeva, Oliver Laeyendecker, Lea Ali-Napo, Paul Contestable, Steve Edwards, Steve Ethridge, Bernard Branson, Philip J. Norris, Michael P. Busch
Serologic Testing Algorithms for Recent HIV Seroconversion (STARHS) assays, also termed Recent Infection Testing Algorithms (RITAs), are used to distinguish recent from long-standing HIV infections.

- Perform a sensitive HIV Ab detection assay to screen population
- Test confirmed HIV Ab+ samples by a less-sensitive (detuned) avidity modified HIV Ab assay
- If negative on the less/sensitive/avidity assay, the individual is within a recent infection “window period”.

High titer and avidity HIV-1 IgG immune responses to the STARHS/RITA assays are usually complete by one year following HIV infection; dynamic period is from 2-11 months following infection.

New STARHS/RITA assays (less-sensitive/avidity/other) requires well characterized specimens collected in the dynamic period following HIV infection, as well as samples from infected subjects with long-standing infections including categories prone to “false recent” results (AIDS; HAART, EC).
STARHS/RITA and Misclassification

Mean (subtype B) 170 days (95% CI=162, 183)

Cutoff

Courtesy B. Branson, CDC
Vironostika HIV-1 EIA System

- Uses a viral lysate as the capture antigen.
- Low sensitive version uses a difficult, 2-step 1:20,000 dilution.
- Inter assay calibration done by using a calibrator standard supplied by the CDC.
 - Screening: \[
 \frac{\text{Sample OD-Negative OD}}{\text{CDC calibrator OD-Negative OD}}
 \]
 - Confirmatory for samples under a result of 2.0
 \[
 \frac{\text{Median sample OD-median negative OD}}{\text{CDC calibrator OD-Negative OD}}
 \]
- Window period at 1.0 SOD is 170 days (95% CI:163-183 days)
- BioMerieux sold its license to manufacture this kit to Avioq which recently received FDA approval.
VITROS Anti-HIV 1+2 Assay

Product Overview
Principles of Procedure: Two stage reaction

1) HIV antibody present in the sample binds with HIV recombinant antigen coated on the wells. Unbound sample is removed by washing.

2) Horseradish peroxidase (HRP)-labeled recombinant HIV antigens are added in the conjugate reagent. The conjugate binds specifically to any human anti-HIV-1 or anti-HIV-2 (IgG and IgM) captured on the well in the first stage. Unbound conjugate is removed by washing.

The bound HRP conjugate is measured by a luminescent reaction. The amount of HRP conjugate bound is indicative of the level of anti-HIV-1 and anti-HIV-2 present.

4 Antigens Coat Well
4 Ag-conjugated to HRP
• 3 Ag for HIV-1
 (Env 13, Env 10, p24)
• 1 Ag for HIV-2
 (Env AL)
Ortho Vitros Assay

- Currently there are 1450 VITROS ECi customers in the US, 350 using their HIV detection system.
- This can be used in a low sensitive (diluted in plasma) version or an avidity (chaotropic agent incubation step).
- There is potential for doing the dilution step on board the machine. For now, the dilution is being done off board.
LS-VITROS and Avidity Development

- Optimize dilution factor for LS assays by calibration to Vironostika LS-EIA.
- Test samples in avidity assay (Chawla et al.) of the assay.
- Investigate proficiency and precision of assay using CDC proficiency panels.
- Calculate window periods at different cut-offs.
1:400 Dilution

Left Diagram:
- LS-Vitros S/C vs. LS-Vironostika SOD
- $R^2 = 0.7368$
- $y = 8.337x + 11.643$
- LS-Ortho (y) = 20

Right Diagram:
- LS-Vitros S/C vs. BED SOD
- $R^2 = 0.5451$
- $y = 8.7572x + 14.133$
- LS-Ortho (y) = 21
Vitros Avidity Studies

Previous studies have been done using the Axsym platform to look at HIV-1 avidity.

(Chawla et al. J Clin Micro Feb 2007)
Blood Donors
2007 ARC Interdonation Intervals

<table>
<thead>
<tr>
<th>Inter-donation interval</th>
<th>Number of subjects</th>
<th>Mean EIA (Standard deviation)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>535</td>
<td>3.59 (2.36)</td>
</tr>
<tr>
<td><120</td>
<td>18</td>
<td>0.04 (0.10)</td>
</tr>
<tr>
<td>120–365</td>
<td>54</td>
<td>1.11 (1.50)</td>
</tr>
<tr>
<td>>365</td>
<td>109</td>
<td>2.49 (2.16)</td>
</tr>
</tbody>
</table>
Vitros Avidity

Avidity Index

Interdonation Interval
Vitros vs BED

\[y = 0.0289x + 0.2801 \]

\[R^2 = 0.4673 \]

N=710
Vironostika vs Vitros

\[y = 0.0756x + 0.2715 \]
\[R^2 = 0.6471 \]

N = 710
Screening S/C vs. Confirmatory S/C

y = 0.9904x - 0.2358
R² = 0.997

Screening S/C cutoff = 10

Confirmatory S/C cutoff = 10

BBI# 1 BBI# 2 BBI# 4 BBI# 5

Li (BBI# 1) Li (BBI# 1) Li (All)

Li (BBI# 1) Li (BBI# 1) Li (All)
Vitros Detuned and Avidity Assays
Window period calculations from Seroconversion panels

- 357 (LS-Vitros) and 350 (Vitros Avidity) longitudinal observations from 70 subjects were used in the window period estimation.
- Days since seroconversion was assumed to be the midpoint between last negative and first positive test dates when the interval was ≤120 days.
- Slope & intercept from a random effects regression, and LS S/C or avidity index were the explanatory variables in the multiple imputation regression model.
- The date that the subject reaches cut-off value was linearly interpolated from the last known date below the first known date above the avidity index cut-off value. If the subject does not reach the cut-off value, the observation is censored at the last date above the cut-off.

Statistical Analysis done by Debra Hanson.
<table>
<thead>
<tr>
<th>Assay, Cutoff Value</th>
<th>Mean Window Period</th>
<th>Standard Deviation</th>
<th>95% Confidence Limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>S/C Ratio, 5.0</td>
<td>61.0</td>
<td>8.7</td>
<td>43.9, 78.1</td>
</tr>
<tr>
<td>S/C Ratio, 10.0</td>
<td>115.0</td>
<td>18.1</td>
<td>79.6, 150.4</td>
</tr>
<tr>
<td>S/C Ratio, 15.0</td>
<td>178.2</td>
<td>29.1</td>
<td>121.1, 235.4</td>
</tr>
<tr>
<td>S/C Ratio, 20.0</td>
<td>238.8</td>
<td>38.6</td>
<td>163.1, 314.5</td>
</tr>
<tr>
<td>S/C Ratio, 30.0</td>
<td>387.5</td>
<td>65.2</td>
<td>259.8, 515.2</td>
</tr>
</tbody>
</table>

Seroconversion panels 357 samples from 70 subjects
Ortho Vitros

Mean Window Period Estimates

<table>
<thead>
<tr>
<th>Assay, Cutoff Value</th>
<th>Mean Window Period</th>
<th>Standard Deviation</th>
<th>95% Confidence Limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Avidity, 0.50</td>
<td>145.3</td>
<td>25.0</td>
<td>96.4, 194.3</td>
</tr>
<tr>
<td>Avidity, 0.60</td>
<td>179.8</td>
<td>26.8</td>
<td>127.3, 232.3</td>
</tr>
<tr>
<td>Avidity, 0.70</td>
<td>243.0</td>
<td>29.7</td>
<td>184.8, 301.2</td>
</tr>
<tr>
<td>Avidity, 0.80</td>
<td>368.2</td>
<td>42.9</td>
<td>284.2, 452.2</td>
</tr>
</tbody>
</table>

Seroconversion panels 350 samples from 70 subjects
Caveat: False Incident Cases

- False-positive EIAs not confirmed with an HIV-1 Western blot or IFA (i.e., diagnostic algorithms with poor specificity)
- Poor specimen handling during processing or shipping
- Chronic infection, inflammation (too much antibody)
- HIV subtype heterogeneity
- Persons with advanced HIV disease (AIDS)
- Persons who have taken antiretroviral (ARV) agents 6 months before test
Validation Panels

- Sensitivity and window period calculations.
 - Clade B Seroconversion panels from HIVNet (collaboration with the CDC)
 - Clade C Seroconversion panels from Caprisa Studies in South Africa (collaboration with Salim Kalim)
 - Multi-clade Seroconversion panels from Nigerian cohort (collaboration with Kevin Delaney at CDC)

- Specificity
 - Long term non progressors/Elite controllers
 - JHU Specificity Panels
 - JHU ER study: predominantly chronically infected individuals
 - AIDS patients with low CD4 counts
 - HAART treated patients with low viral load
Validation Panels

Cutoff and false Incidence comparison of specificity panels (% Incident):

<table>
<thead>
<tr>
<th>False Recency Rates</th>
<th>Vitros LS-Eci S/C</th>
<th>Vitros Avidity Index</th>
<th>BED SOD</th>
<th>Vironostika LS-EIA SOD</th>
<th>BioRad Avidity Index</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>13</td>
<td>16</td>
<td>18</td>
<td>20</td>
<td>60</td>
</tr>
<tr>
<td>JHU ER Study (n=297; Vitros avidity n=247)</td>
<td>12%</td>
<td>15%</td>
<td>16%</td>
<td>18%</td>
<td>21%</td>
</tr>
<tr>
<td>CD4<50 (n=140)</td>
<td>6%</td>
<td>7%</td>
<td>11%</td>
<td>14%</td>
<td>6%</td>
</tr>
<tr>
<td>HAART CD4>400 VL<50 (n=134)</td>
<td>17%</td>
<td>23%</td>
<td>25%</td>
<td>29%</td>
<td>42%</td>
</tr>
</tbody>
</table>
Conclusions

- Calibrated the LS-Vitros assay to the Vironostika.
- Calculated the window period for LS- and avidity Vitros.
- Investigated false recency rates of challenge panels.
Work to do

- Window periods for combined assays.
- Investigate other chaotropic agents for avidity assay.
- Test with other clades to look at clade variation.
Thank you!

BSRI
Mila Lebedeva
Mike Busch
Philip Norris
Leslie Tobler

CDC
Debra Hanson
Michelle Owens
Kevin Delaney
Steve Ethridge
Joanne Mei
Bernie Branson

JHU
Oliver Laeyendecker

Ortho Clinical Diagnostics
Paul Contestable
Jane Mackie
Steve Edwards

NYDPH
Lea Ali-Napo

UCSF
Chris Pilcher

Health Protection Agency, UK
Gary Murphy